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As we finish up the third quarter’s newsletter, just
a little late this time (sigh), we are just days away
from our symposium in Austin Texas. I hope to
see all of you there. All the plans are in place with
no ill effects to the symposium from Ike. We ex-
pect the symposium to be the best one to date.
We have people working on 2009 symposium and
the Planning has already started on the 2010 sym-
posium.

It is going to be a busy three months for those on
the Board of Directors of the IEEE PSES. We once
again have to go through the Society Review
Committee’s (SRC) process, as we are a provi-
sional society. We have already received the re-
quest for our current status. They have sent us
the forms to fill out once again. We are required
to reply by December and be prepared to discuss
in person at their meeting in February. My intent
is to make sure we do a super job this time to
convince them we should be removed from provi-
sional list.

Part of what will need to happen is we need more
members to step up and take an active role in the

society. There are lots
of options, start a lo-
cal chapter, join a
TAC, help the sympo-
sium committee or
one of the many other
committees the BoD
has. One place we
really could use help
is in helping promote
the society to in-
crease awareness and membership. So if you
have a sales or marketing background, we could
really use your help.

It is that time of year that you must renew your
IEEE membership. Please remember to renew
early and include the Safety Society on your re-
newal. Like the other societies, we have a large
loss of members every year. The difference be-
tween us and the other societies is we gain enough
new members to make up for the loss and then
some. If we could prevent the normal loss a soci-
ety has for a couple years, it would significantly
boost our stability. So please renew ASAP. I would

http://www.ieee-pses.org/newsletters.html
http://www.ieee.org/
http://www.ieee-pses.org/
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James A. Bacher
President IEEE PSES

Seeking Nominations for IEEE Medals and Recognitions
The IEEE Awards Board is seeking nominations for IEEE Medals and Recognitions and en-
courages the use of its online Potential Nominee Form. This form allows a preliminary review
of a nominee by the selection committee and an opportunity to obtain feedback prior to sub-
mitting an official nomination form. The Potential Nominee Form is available on the IEEE
Awards Web Page at:

http://www.ieee.org/portal/pages/about/awards/noms/potnomform.html

The deadline for submission of an official nomination form for any of the IEEE Medals and
Recognitions is 1 July 2008.  For questions concerning the Potential Nominee Form, please
contact awards@ieee.org.

love to be able to go into the SRC meeting show-
ing them that all of our members renewed. It would
be mind-blowing for the SRC.

I look forward to seeing all of you in Austin at the
symposium.

Jim

mailto: j.bacher@ieee.org
mailto: j.bacher@ieee.org
http://www.ieee.org/portal/pages/about/awards/noms/potnomform.html
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Richard Georgerian
voice: (303) 833-2327
e-mail: richardg@ieee.org

People Looking To Start Chapters

Mike Cantwell, PE
Sr. Account Representative
Intertek ETL SEMKO
420 N. Dorothy Dr.
Richardson, TX 75081
Tel: 972-238-5591 x107
Fax: 972-238-1860
e-mail: mike.cantwell@intertek.com
or
Bill Paschetag b.paschetag@verizon.net

Denver Colorodo Dallas Texas

Doug Nix
dnix@ieee.org
voice: (519) 729-5704
FaX: (519) 653-1318

Toronto Ontario

Southern CaliforniaNorth Carolina

Charles Bayhi (bayhi@cpsm-corp.com).Warren Fields (ncps@bellsouth.net).

To see current chapter information please go to the
chapter page at:

http://www.ieee-pses.org/Chapters/index.html

Chapter Safety Probes

Do not forget about our job listings on our
website.

mailto:richardg@ieee.org
mailto:richardg@ieee.org
mailto:richardg@ieee.org
mailto:mike.cantwell@intertek.com
http://www.ieee-pses.org/Chapters/index.html
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Ready…Shoot…Aim

It’s certainly wise to do some planning before undertaking a complex activity—sort of like taking aim
before you shoot. In the recent changes (with more likely to come) to the U.S. the product safety
system, there appears to be somewhat of a trend toward more shooting with less aiming.

Maybe another old expression, “Too many cooks spoil the broth,” applies as well. The uproar of this
summer over matters such as toy safety has been partly pushed to the background by the current
economic meltdown, but you can bet it will resurface. The summertime flap resulted in Congress
deciding it had to “do something,” and accordingly legislation was passed revamping the Consumer
Product Safety Commission and requiring mandatory third-party testing for several types of products,
mainly those related to children. (Similar events transpired in Canada.)

When it comes to tinkering with a country’s product safety system, the wisdom of gathering input from
all interested parties is apparent. The problem is that there seems to be no master plan and no
guiding organization. The American National Standards Institute (ANSI) strives mightily to be the
guiding organization, but in the sort of chaos that reigned this summer, ANSI seemed to be just one of
many voices.

The public blithely assumes that the federal government is supposed to make sure that anything
offered for sale is safe, lots of niche organizations are serving up their own ideas of how product
safety should work, and meanwhile it seems that few are aware, for example of how the U.S. and EU
product safety systems work.

As product safety professionals know, compliance is generally voluntary in the U.S., but product
safety certification must be done by a recognized third-party testing laboratory. On the other hand,
compliance is generally mandatory within the EU market, but most certifications are via manufactur-
ers’ self-declarations instead of from third parties. If some critics of the present system (such as
Consumers Union) have their way, we will leapfrog the EU and go to mandatory third-party testing of
most products.

Starting with the U.S. congress, some coherent thought needs to be given to what the ground rules
and basic philosophy will be!

—Gary Weidner

EDITORIAL



IEEE PSES Product Safety Engineering Newsletter Vol.  4  No. 3  Page 6

Insulation Coordination for High Frequencies

Table 1. Some example applications of high frequency voltages 

Frequency 
MHz 

Wave length 
m 

Tolerance 
MHz Application 

0.05 to 1 - - Switch mode power supplies 
0.03 to 0.15 - - Computer displays 

869 - - Cellular base station transmitters 
13.56 to 27.12 22.1 to 11 0.07 to 0.163 High frequency heating 

915 to 2450 0.33 to 0.12 13 to 50 Microwave heating 
 

by Lal Bahra

This article explains the effect of high frequencies on clearances, creepage distances, and solid insulation,
and points out some unresolved issues. The high frequency requirements apply to basic, supplementary,
and reinforced insulation. (High frequencies are usually considered to be those greater than 30 kHz.)

Background

Not all of the applications shown in Table 1 require safety insulations, and high frequency requirements
may not apply, but they do apply for example, to switch mode power supplies (SMPSs), which are used
extensively in electronic products.

The IT industry has led in trends toward smaller and smaller equipment sizes, which are now preferred
by consumers, and manufacturers are trying to miniaturize their products. In order to accomplish that,
power supplies have to be made smaller and smaller.

The transformer in an SMPS operates at a high fundamental frequency, so it develops a very high
electrical stress in the insulation due to higher temperature, humidity, possible partial discharge effect,
and high frequency which lowers the electric field strength of the material. (The waveforms in an
SMPS are non-linear and contain plenty of harmonics in addition to the fundamental high frequency;
the harmonics have low amplitude and are ignored in the requirements described in this article).

Consequently, there is a constant need for development of good materials offering high electric field
strength. For example, Kapton, a particular form of polyimide, has an electric field strength of 303 kV/
mm compared to only 50 kV/mm for polyethylene (the voltage values are rms), allowing a smaller
thickness of Kapton compared to polyethylene for the same electric strength test voltage. Because the
higher electric field strength results in more desirable insulating materials (a smaller thickness of material
passes the required electric strength test), this helps to make the products smaller.

Unfortunately, better insulators for electricity are also better insulators against propagation of heat. At
higher frequencies, dielectric losses are higher, resulting in more heat generation, and use of good
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Continued on Page 8

insulating materials does not help in conducting away the heat that is generated unless other means
such as fans or liquid cooling systems are used.

At higher frequencies, the partial discharge effect is also increased. As a result, insulation dimensions
for higher frequencies have to be increased compared to insulation dimensions for power frequencies.
Manufacturers need to develop materials which when molded or rolled into thin sheets do not have any
voids or gaps (which are the sites for partial discharge) and thus avoid further increased dimensioning.
This article does not address partial discharges.

For frequencies above 30 kHz, IEC 60950-11 says, “The insulation requirements given in 2.10 are for
frequencies up to 30 kHz. It is permitted to use the same requirements for insulation operating at
frequencies over 30 kHz until additional data is available.”

Now the additional data is available. The IEC TR 60664-4 has been published as an IEC standard now
known as IEC 60664-4: 2005, Considerations of high frequency voltage stress.2 This is a basic safety
publication and all IEC technical committees must follow this standard; TCs for vertical standards are
working to adopt these requirements.

Clearances

Breakdown of a clearance is a very fast phenomenon; it can occur in less than a microsecond. Therefore,
at power frequencies, the ac voltage is a constant voltage as far as breakdown is concerned. At higher
frequencies that may not be true. The breakdown may not be able to hold or initiate because the voltage
may come down to a low value very fast or might even reverse. This implies that the high frequency
breakdown voltage may be higher than the power frequency breakdown.

But at these higher frequencies when the ionization of air starts, the ions take some time to travel from
one conductive part to the other. If the polarity of the voltage reverses before all the ions have reached
the other conductive part, then the field becomes distorted and the breakdown voltage is actually reduced
before it goes up. The data in figures A.1 and A.2 of IEC 60664-4 supports this and shows that the
breakdown voltage for the same clearance decreases starting from power frequencies to about 2.5
MHz, and then the breakdown voltage starts increasing as the frequency goes up.

The data in IEC 60664-4 shows that a 2 mm distance will break down at about 8 kV peak at power
frequency; at 6.75 kV peak for a frequency of 500 kHz, and at about 6.6 kV peak for a frequency of 1
MHz for homogenous fields. This supports the theory that the breakdown voltage decreases as the
frequency goes up and that the clearance needs to be increased as the frequency goes up for the same
electric strength test voltage.

IEC 60664-4 describes a critical frequency f
crit

 at which the reduction in the breakdown voltage for a
particular clearance dimension occurs. The critical frequency f

crit
 is calculated as follows:

where d is the clearance distance in mm. For example, for 1 mm clearance, the critical frequency is 200
kHz. But looking at the data in figure A.1 of IEC 60664-4, it appears that the breakdown voltage is
almost continuously dropping starting at power frequency. The figure A.1 should have provided more
data points in the curves or there should have been an explanation and reason for this drop. Looking at
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the data in figure A.2 of IEC 60664-4, it appears that the breakdown voltage first goes up (except for 1
mm and 1.5 mm clearances) and then starts to go down at about 200 k Hz.

As mentioned, the breakdown voltage decreases with increasing frequency. The frequency at which
the breakdown voltage is the lowest is designated as f

min
. The maximum reduction is about 20

percent of the breakdown voltage at power frequencies. At frequencies above f
min

, the breakdown
voltage goes up (see Figure 1). These are applicable to homogenous and approximate homogenous
field conditions. Homogenous field conditions are considered to exist if the radius of curvature of
metallic conductors is equal to or greater than 20 percent of the required clearance (see Figure 2).

If a detailed evaluation is not intended and approximate values are considered acceptable, a clearance
within the frequency range of 30 kHz to 10 MHz should be designed for 125 percent of the required
withstand voltage according to Table F.7 of IEC 60664-13 or Table 3 of IEC 60664-5.4

If a detailed evaluation is intended, the clearance should be designed using the following criteria:
For frequencies below f

crit
 the clearance should be designed for 100 percent of the required withstand

voltage according to Table F.7 of IEC 60664-1 or Table 3 of IEC 60664-5.
For frequencies above f

min
 the clearance should be designed as for approximate values as given

above.
For frequencies between f

crit
 and f

min
 the clearance should be designed for a withstand voltage that

is equal to the required withstand voltage according to Table F.7 of IEC 60664-1 or Table 3 of IEC
60664-5 multiplied by

Figure 1. Values of fcrit and fmin
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The effect of frequency is much stronger for inhomogeneous fields, and the reduction in breakdown
voltage is considered to be almost 50 percent of the power frequency breakdown voltage. Table 1 of
IEC 60664-4 gives the values of clearances for inhomogeneous electric fields. There is no mention of
pollution degrees or any particular frequency. IEC 60664-4 should have included a table for clearances
with clearances going up (or down) in value as the frequency goes up (similar to Table 3 for creepage
distances). It is not sure if these values are average values of all the frequencies from 30 kHz to 10 MHz
or if these are the values at some particular frequency. This way, we may be over-applying the
requirements if the frequency is slightly above 30 kHz and may be under-applying the requirements if
the frequency is close to 10 MHz.

Table 2 compares the clearances from IEC 60664-4 with the clearances required by IEC 60950-1.
Figure 3 shows this comparison of high frequency clearances versus power frequency clearances.

It is apparent that present products at 1400 V or less may not be impacted in terms of clearances. But if
the voltage is higher than 1400 V, then clearances at higher frequency of table 3 need to be taken into
account.

Creepage distances

In IEC 60664-1, tracking properties of the material (expressed as Comparative Tracking Index, CTI)
and pollution degree (surface contamination) are the only criteria used to determine creepage distance

Figure 2. Homogeneous field conditions exist if the radius of curvature of conductors is ≥  20 percent of the
required clearance.

Continued on Page 12
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AAAAAdvdvdvdvdvantages of Mantages of Mantages of Mantages of Mantages of Membershipembershipembershipembershipembership
in the IEEE PSESin the IEEE PSESin the IEEE PSESin the IEEE PSESin the IEEE PSES

MMMMMakes yakes yakes yakes yakes you parou parou parou parou part of a community whert of a community whert of a community whert of a community whert of a community where ye ye ye ye you will:ou will:ou will:ou will:ou will:
• Network with technical experts at local events and industry conferences.
• Receive discounts on Society conferences and symposiums registration fees.
• Participate in education and career development.
• Address product safety engineering as an applied science.
• Have access to a virtual community forum for safety engineers and technical professionals.
• Promotion and coordination of Product Safety Engineering activities with multiple IEEE Societies.
• Provide outreach to interested engineers, students and professionals.
• Have  access to Society Publications.

E-Mail List: http://www.ieee-pses.org/emc-pstc.html
Virtual Community: http://www.ieeecommunities.org/emc-pstc

Symposium: http://www.ieee-pses.org/symposium/

Membership: The society ID for renewal or application is “043-0431”.   Yearly society fee is US $35.

UL University Offers
IEEE PSES Members
15 Percent Discount

UL University (ULU) has established a discount code which will provide all IEEE-
PSES members with a 15 percent discount off the price of all ULU instructor-led
workshops, online programs, videos, books, and other services/products offered
under the ULU brand. The discount is automatically applied during registration
or purchase of ULU products. Registration or product purchase can be
accomplished online at www.uluniversity.com or by calling 888-503-5536 in the
U.S. or the country-specific number posted on the ULU website.

To receive the discount, members must enter or mention the discount code found
in the Members Only section of the PSES website.

If you or any member has specific questions regarding ULU products or services,
please call or email me or call the local country specific number posted on the
UL University website.

Tony Robertson
Manager − Customer Training

IEEE PSES Membership savings

http://www.ieee.org/membership/
http://www.ieee.org/membership/
http://www.ieee.org/membership/
http://www.ieee.org/membership/
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Figure 3. Comparison of high frequency clearances and power frequency clearances.
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Continued on Page 14

for a given voltage. More recent data shows that this is true even under severe environmental conditions
and if the materials are not resistant to tracking. For creepage distances less than 2 mm, the breakdown
voltage across the surface of the material may be reduced by pollution and IEC 60664-5 takes that
reduction into account.

Experimental data shows that the breakdown voltage of the creepage distance is less dependent upon
the frequency of the applied voltage, but larger creepage distances are required in order to avoid partial
discharge.

However, partial discharge inception voltage not only gets affected but is considerably lower than the
breakdown voltage. The partial discharge inception voltage at 1 MHz is only about 66 percent of the
partial discharge inception voltage at 100 kHz. This value is reduced by about an additional 30 percent
at 3 MHz (about 46 percent of the value at power frequency). The partial discharge occurs before
breakdown and degrades the properties of the insulating material. This requires the creepage distances
at higher frequencies to be larger than those at power frequency.

Creepage distances should be in accordance with Table 2 of IEC 60664-4. This table does not take into
account the influence of tracking, and therefore if the values calculated are smaller than those of Table
F.4 of IEC 60664-1 or 60664-5, the values from the latter (Table F.4 of IEC 60664-1 or 60664-5)
should be used. This is only for those materials that are deteriorated by heat. For materials such as glass
and ceramic that do not deteriorate with heat, Table 1 of IEC 60664-4 for clearances can be used for
creepage distances.

Please note that for frequencies up to 400 kHz and voltages up to 900 V peak, the values for creepage
distances do not exceed the values of creepage distances in table 2N of IEC 60950-1. Therefore, for
voltages up to 900 V peak at up to 400 k Hz, creepage distances of IEC 60950-1 can be used without
using table 3 (shown yellow highlighted in Table 3).

NOTE – The Table 2 values are for basic insulation in pollution degree (PD) 1. The values for PD2 and PD3 are
obtained by multiplying these values by 1.2 and 1.4 respectively. The values for reinforced insulation are
obtained by doubling the values for basic insulation.

Figure 4 shows the different values of creepage distances at 100 k Hz.

Solid insulation

Solid insulation has a higher dielectric constant than air, and so the solid insulation can provide much
higher electric field strength than air. However, thickness, temperature of the solid insulation material,
and duration of electrical voltage can affect the electric field strength. If there are no voids and gaps
then very good insulating materials may have very high electric field strengths.

Voids and gaps result in partial discharges. In layered materials, there may be air gaps when the materials
are joined together, which may exhibit the same phenomenon (partial discharge). When a void is present,
the voltage divides inversely proportional to the dielectric constant of the insulation. Air having a
dielectric constant of one bears the largest voltage drop and tends to get stressed much more and may
ionize, leading to partial discharge.

It is already known that the electric field strength of a material goes down as its temperature increases
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Figure 4. Creepage distances at 100 k Hz for PD1, PD2 and PD3.



Vol.  4  No. 3  Page 15  IEEE PSES Product Safety Engineering Newsletter

and therefore, temperature must be taken into account when determining the electric field strength of
solid insulation. Time-to-failure caused by partial discharges is inversely proportional to frequency.
The time-to-failure is reduced at higher frequencies if partial discharge can occur. Therefore, material
must be free of voids and gaps to avoid partial discharges. According to IEC 60664-4, the short-time
breakdown electric field strength at 1 MHz can be as low as 10 percent of the electric field strength at
power frequencies.

Another important consideration may be the thickness of the film used for solid insulation. The
breakdown electric field strength is related to thickness. For very thin material, the breakdown electric
field strength at high frequencies can be higher than thicker materials. In IT equipment, it is common to
use two or three layers of very thin films as insulation and this may be the reason that IT industry has
not seen any problems in SMPSs that operate at frequencies of 200 to 500 kHz. SMPS operating at 200
kHz to 1 MHz are being used at present.

Two methods to determine acceptable solid insulation
IEC 60664-4 provides two ways to ensure that solid insulation will perform satisfactorily at higher
frequencies.

Method 1: Calculate the required thickness of solid insulation at higher frequencies
The first method involves determination of maximum permitted thickness. If the solid insulation thickness
is 0.75 mm or more, the electric field strength shall be equal to or less than 2 kV/mm. If the solid
insulation is less than or equal to 30 μm, the field strength shall be equal to or less than 10 kV/mm. For
thicknesses of solid insulation in between the above two values, the electric field strength E may be
calculated as follows:

Where E is the electric field strength in kV/mm; and d is the actual thickness of the insulation in mm
(see Figure 5).

For example, for a material that has electric field strength of 10 kV/mm, the thickness of insulation
shall be less than or equal to:

Therefore, insulating materials with high electric field strength may not be of much help at higher
frequencies. They are required to be thinner and as such may be difficult to fabricate and also too
fragile to handle. In addition, the material must not have any voids or gaps.

Table 4 describes the materials presently used at frequencies higher than 30 k Hz and also the required
thickness in order to comply with the equation given for the electric field strength. It is interesting to
know that the thickness of the Kapton (polyimide) material must be decreased in order to meet the high
frequency requirements. The maximum electric strength that two layers of Kapton, 0.05 mm can pass
is 15 kV and the maximum electric strength that one layer of Kapton 0.025 mm thick can pass 7.5 kV
(based on its E value equal to 303 kV/mm at power frequency).

Continued on Page 16
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The calculated thickness of 0.00083 mm as per Table 4 (which will comply with IEC 60664-4) will
pass only 0.25 kV. That means that we cannot use this thickness at all (for example for a PWB or for a
bobbin). In order to pass the 3 kV electric strength test of IEC 60950-1, we need to have a minimum
thickness that will pass 3 kV for a single layer. In order to meet IEC 60950-1, a single layer of Kapton,
0.001 mm thick has to be used and that will pass only 3 kV with no margin.

But the value of E used in Table 4 is at power frequency. The value of E goes down as the frequency
goes up. Therefore, we should use the value of E which is at the actual frequency used in the application
(E

F
). Figure C.3 of IEC 60664-4 gives the value of E

F
 at various frequencies for many different materials.

This data can be used to either develop a reduction factor K
F
 for each different material at different

frequencies or come up with an average reduction factor at different frequencies. Tables 5 and 6 present
approximate values of reduction factors for different materials as indicated.
Let us recalculate the Table 4 for “Solid insulation thickness requirements” again using the reduction
factor at 500 kHz which is our maximum frequency in the example used. For the materials used, the
high frequency electric field strength data was not available. Therefore, average value of 0.31 for
reduction factor K

F
 computed from the above Table 5 has been used in the calculations. Looking at the

new values of thicknesses obtained in Table 7, even though they are approximately four times the
original values in Table 4, these values in Table 7 still need to be reduced in order to meet electric field
strength requirements of IEC 60664-4.

In Table 7, Kapton, 0.0027 mm thick will pass an electric strength test of only 0.82 kV at power
frequency and 0.26 kV at 500 kHz, and that is much less than the required electric strength test of 6 kV
(if we use two layers of 0.00135 mm thick Kapton).

Figure 5. Permissible field strength for dimensioning of solid insulation.
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Likewise, a FR530L bobbin, 0.03 mm thick will pass only 0.99 kV at power frequencies and 0.31 kV at
500 kHz. I doubt if any material will actually meet the high frequency electric field strength and
thickness requirement of IEC 60664-4 and still would have sufficient thickness to meet the electric
strength test of various vertical standards. I would rather say it otherwise that the electric field strength
of a material should at least be 10 kV/mm or in accordance with Figure 3 of IEC 60664-4 at the desired
frequency to be suitable for application at that frequency. Applying equation 3 or Figure 3 of IEC
60664-4 is not really practical.

It was proposed to require the voltage strength V
W

 determined by multiplying the breakdown electric
field strength E

F
 at the higher frequency with the actual thickness used in the application to exceed the

actual measured peak working voltage V
PW

 at the applicable high frequency. This will be much more
practical. This proposal was accepted. By doing this we are ensuring that the reduced breakdown field
strength and therefore, the reduced actual voltage strength V

W
 of the actual thickness used, is still

Continued on Page 18
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higher than the actual measured high frequency peak working voltage V
PW

. This way the manufacturer
can use higher thickness to meet the electric strength test at the power frequency and also insure that
V

W
 is always greater than V

PW
.

This is determined as given below:
E

F
 = E

P
 x K

FWhere
E

P
 is the solid insulation breakdown electric field strength (rms) at power frequency;

E
F
 is the solid insulation breakdown electric field strength (rms) at the applicable high frequency;

K
F
 is the reduction factor at the applicable high frequency from Table 5 or Table 6 above.

Other variables used are as follows:
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V
W

 is the actual voltage strength (peak) of the actual thickness of the material at the applicable high
frequency (V

W
 = E

F
 x d x 1.414);

V
PW

 is the measured peak working voltage at the applicable higher frequency across the insulation;
d is the actual thickness of solid insulating material in mm.

For calculating the value of E
F
, we must know the value of E

P
. The actual voltage strength V

W
 for the

actual thickness used must be greater than the peak working voltage V
PW

 at the applicable high frequency.
A factor of 20 percent can be used for basic or supplementary insulation and also for the reinforced
insulation after doubling the peak working voltage V

PW
.

Summary of method 1 (calculation of thickness)

a) Determine the value of E
P
 in kV/mm for the insulating material at power frequency at the applicable

thickness. Use the actual value of E
P
 for the material from the tables (or you need to determine this).

If not available, use the value of E
P
 for the 0.75 mm thickness

b) Determine the reduction factor K
F
 for the electric field strength of the insulating material at the

applicable frequency from Table 5 or Table 6 as applicable. If the material is not the one listed in
table 2 or 3, use the value of K

F
 in the last row of the Table 5 or Table 6 as applicable.

c) Determine the electric field strength E
F
 at the applicable frequency by multiplying the value E

P
 at the

power frequency by the reduction factor K
F
.

E
F
 = E

P
 x K

F

d) Determine the actual voltage strength V
F
 of the insulating material by multiplying the value E

F
 by

the actual thickness (d in mm) of the insulating material (at the applicable higher frequency).
V

F
 = E

F
 x d (where d is the actual thickness in mm)

e) For basic insulation or supplementary insulation, V
F
 shall exceed the measured high frequency peak

working voltage V
PW

 by 20 percent.
V

F
 > 1.2 x V

PW

f) For reinforced insulation, V
W

 shall exceed twice the measured high frequency peak working voltage
V

PW
 by 20 percent.

V
F
 > 1.2 x 2 x V

PW

The 20 percent factor is to provide a safety margin.

Therefore, the solid insulation which is subjected to both power frequencies and higher frequencies
(for example, a PWB) must meet the solid insulation requirements at power frequencies and in addition
the requirements at actual higher frequencies used in the application. Some values of E

P
 are given in

Table 8.

Method 2: Perform electric strength testing of solid insulation at higher frequencies

The second method involves actual electric strength or partial discharge testing at higher frequencies.
Capacitive load is very large at higher frequencies, so testing is limited to only small components and
subassemblies. For complete equipment, IEC 60664-4 permits the electric strength test at the power

Continued on Page 20
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Continued on Page 24

frequency voltage in accordance with 4.1.2 of IEC 60664-1. This is a bit strange, as this test is already
being conducted on all IT equipment. High frequency electric strength test equipment is complicated
and may require several transformers to give you a sufficiently high voltage output at each desired
frequency. But since it is permitted to conduct the test at power frequency (for complete equipment), it
is not clear if component and subassemblies still need to be tested for the high frequency dielectric
strength test. IEC 60950-1 also has a similar test for solid insulation conducted at power frequencies.

The high frequency electric strength test equipment involves the building of several high frequency
resonant transformers for obtaining a high voltage output at the desired frequency to cover the entire
range. It is very hard to do the testing due to the strong reaction between the impedance of the component
under test and the frequency and output voltage of the resonant transformer.

A high frequency high power oscillator can also be used as described in IEC 60664-4. Table D.1 in IEC
60664-4, given as Table 9 below, is provided for this oscillator’s output. The total load impedance is
tuned to a desired frequency. However, it should be made clear as to what test voltage needs to be used
in relation to the actual measured peak working voltage at the high frequency across the insulation.

For high frequency testing IEC 60664-4 makes the following statement: “Due to the large capacitive
load at high-frequency, high-frequency testing is primarily applicable to components and subassemblies.
If an additional high-voltage test on complete equipment is required, this test can be performed according
to 4.1.2 of Part 1 with power frequency voltage.”
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IEC 60664-4 permits the verification of clearances by an electric strength test if the required withstand
voltage is increased to 125 percent of the required value. IEC 60664-4 should have given a similar
verification method for electric strength for solid insulation at power frequency but raising the required
withstand voltage to 125 percent of the required value. That may be very practical rather than using
expensive, complicated equipment for high frequency electric strength test.

From the above, it is clear that we should follow the clearance and creepage distances of the tables
given in IEC 60664-4. For solid insulation, we should continue to conduct the electric strength test of
IEC 60950-1 or IEC 600656. Electric strength test requirements of IEC 60950-1 are going to be aligned
with future IEC 623687 and those will be aligned with the upcoming IEC 60664-2-15 with respect to the
electric strength. TC96 (basic safety committee for transformers), in developing requirements for high
frequency in their standard 96/275A/CDV for IEC 61558-2-168 is following somewhat similar approach.

Solid insulating materials suitable for high frequencies should have the following properties:
High electric field strength (kV/mm);
Process-ability (easy film forming);
Suitability for forming electronic parts.

Some examples of materials used in high frequency applications are polyimide filled with fluorine
cores; PTFE; ePTFE; cyanate; AllnN/GaN; the materials mentioned in the tables above.

TC96, technical committee for transformers and switch mode power supplies, is also going through the

process of adopting the requirements of IEC 60664-4, except the high frequency electric strength test.

Conclusion

As the frequency goes up, the voltage withstand capability of a clearance starts to go down. Therefore,
for the same withstand voltage, clearance has to be increased. Creepage distances are also required to
be larger than what they are at the power frequency because the partial discharge initiating voltage
goes down with increasing frequency.

Insulating materials deteriorate in electric strength properties when subjected to high frequency voltages.
Solid insulation properties degrade as the frequency goes up. Designers should design their circuits
using the right materials that are free of voids and gaps to avoid deterioration and damage by partial
discharges (partial discharge may occur if the voltage is more than 500 V peak). The breakdown electric

Continued on Page 22
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field strength at the applicable frequency multiplied by the actual thickness used should be greater than
the peak working voltage measured at the applicable high frequency.

Lal Bahra is a P. Eng. in Global Regulations and Standards at Dell Inc.
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Notes

News and Notes

What’s new

Society

When renewing your IEEE membership…

It’s the renewal time of the year—a good time to make sure that the PSES is noted in your IEEE
technical interest profile. You can easily update your technical interest profile to include Product Safety
Engineering. Just log on to your account using “My IEEE.” Select “Update Profile” to revise your
technical interest profile to include Product Safety Engineering.

Neither rain nor wind…

Gary Schrempp, 2008 IEEE PSES Symposium Chair reports questions as to whether Hurricane Ike
affect the 2008 symposium. “Our symposium was unaffected, and will be held as scheduled,” he says,
also noting that advance registrations are coming in at a rate far in excess of last year.

Role of Warnings and Instructions course is scheduled

The University of Wisconsin College of Engineering Department of Engineering Professional Devel-
opment will offer its well-regarded course on warnings and instructions November 5–7, 2008 at the
university’s Madison, WI campus. In addition to general course materials, participants in the three-
day course will receive copies of the ANSI Z535.4 standard for product safety signs and labels and
the ANSI Z535.6 standard for safety information in product manuals. For more information, visit http:/
/epd.engr.wisc.edu/webK007 or call Program Director Jeff Oelke at 800-462-0876.  (See the Decem-
ber 2006 issue of PSEN for an article about this course.)

Harmonized appliance standard for North America almost ready

A North American 60335-1 (Household and similar electrical appliances – Safety – Part 1: General
requirements) standard, being prepared under the auspices of CANENA (www.canena.org) is edging
closer to publication. Representatives from ANCE, CSA, UL, trade groups, and companies in Canada,
Mexico, and the U.S. met in July in the Washington, DC area to address comments received on the
draft that been circulated for comment.

Not all of the comments could be addressed at the two-day meeting, so it was followed by a telecon-
ference in August. Chairman Mark Hinkleman says that one more teleconference is likely to be suffi-
cient to finish the work, and publication of the standard is expected during 2009. This standard will
ultimately reach many product areas—more than a hundred product-specific Part 2 standards are
associated with the IEC 60335-1 standard.
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Touch Current Measurement Comparison:
Looking at IEC 60990 Measurement Circuit Performance, Part 2: Electric Shock

by Peter E. Perkins, PE

Abstract

This article examines in some detail the performance of IEC 60990 circuits, considering spe-
cific conditions or waveforms. Conditions of electric burn (eBurn) plus touch current response
by these circuits are shown. Examples are provided to show a range of waveforms and their
calculated response.

The discussion is divided into two parts: Part 1, Electric Burn (eBurn), then Part 2, Electric
Shock TC (EStc) comparisons across two circuits—startle-reaction circuit and let-go circuit.
These results are compared to a TC waveform to show a relation to modern electronic equip-
ment.

This article confirms the continued need for peak measurements for TC waveforms from
electronic equipment.

PART 2: ELECTRIC SHOCK

IEC 60990 provides two touch current measurement circuits which meet the frequency factor
curves of IEC 60479 under the following conditions.

A circuit weighted for startle-reaction (formerly called perception-reaction), Figure 4 in IEC
60990, which is called s-r in this article.

A circuit weighted for let-go, Figure 5 in IEC 60990, called l-g here.

From Figure 3 of Part 1 of this article, reproduced here, startle-reaction is defined by curve a
(the 0.5 mA line). Let-go is defined by curve b (which is 5 mA under steady state conditions but
can go much higher under short-time contact. The c curves identify the region of ventricular
fibrillation (VF) which is fatal if not quickly reversed.

The human body can take more current at higher frequency for the same effect. The curves of
Figure 8 are from IEC 60990 and show the frequency factor for startle-reaction as well as the
adequacy of the IEC 60990 circuits in adjusting the high frequency components according to
this curve.

Touch Current Measurement Comparison
Part 2
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Figure 3. LF ac duration vs. body current (IEC 60479-1, Figure 20). The reader is referred to IEC 60479 for
details of graph nomenclature not discussed in this article.

Figure 9 gives a comparison of the frequency factor curves for startle-reaction and let-go circuits.

Continued on Page 28
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• Product Safety: Consumer, medical, computer (IT), test and measurement, power
supplies, telecommunication, industrial control, electric tools,
home appliances, cellular and wireless, etc.

• Product Safety 101: Papers / presentations intended for new safety engineers. This will
include certification processes, product evaluation and testing, re-
port writing, and working with designers to get it right the first time.

• Safety Subjects: Electrical, mechanical, fire, thermal, chemical, optical, software, func-
tional, reliability, etc.

• EMC / RF: Electromagnetic emissions, electromagnetic immunity, regulatory,
Introduction to EMC/RF for the safety engineer and compliance en-
gineer.

• Components: Grounding, insulation, opto-couplers, capacitors, transformers, cur-
rent-limiters, fuses, power line filters, ferrite, environmental, electro-
magnetic emissions, electromagnetic immunity, regulatory, etc.

• Certification: Product safety, electromagnetic emissions, electromagnetic immu-
nity, environmental, processes, safety testing, regulatory, etc.

• Standards Activities: Development, interpretations, status, interpretations, country require-
ments, Laboratory Accreditation, etc.

• Safety Research: Body physiological responses to various hazardous energy sources,
unique safeguard schemes, etc.

• Environmental: RoHS, WEEE, EuP (Energy-using Products), Energy Star, Packaging
Directives, REACH (Chemical), CeC, etc.
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2009 IEEE Symposium
on Product

Compliance Engineering
Sponsored by the IEEE Product Safety Engineering Society 

26-28 October 2009 Toronto Ontario Canada
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Author’s Schedule

www.ieee-pses.org/symposium

Call for Papers, Workshops, and Tutorials
The IEEE Product Safety Engineering Society seeks original, unpublished
papers and tutorials on all aspects of product safety and compliance en-
gineering including, but are not limited to:

Intent to present and topic (e-mail) April 29, 2009
Draft e-paper June 1, 2009
Notification of Acceptance July 6, 2009
Complete e-paper August 17, 2009

See http://www.ieee-pses.org/symposium/index.html#CFP  for more details on
requirements and dates.
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2004 / 2005 / 2006 / 2007  IEEE-PSE Symposium

CD Purchasing Information

SYMPOSIUM PAPERS ON CD:

The Product Safety Engineering Society continues to offer the 2004 IEEE PSES records for sale.
The cost for the CD is $35 plus shipping and handling for IEEE members; $50 plus shipping and
handling for non-IEEE members. At this time, check or money orders are the means for payment.
Please provide the following information:

CDs to be shipped to-  ( Please print or type.)

Name:__________________________________________

Mailing address::__________________________________________

__________________________________________

__________________________________________

__________________________________________

IEEE member number:_________________

Shipping and handling: $5 per CD

Payment: Check or money order.

Make Check or money order to: "IEEE Product Safety Society"
Quantity 2004:____ x $35 = _________  for IEEE members
Quantity 2004:____ x $50 = _________ for non-IEEE members
Quantity 2005:____ x $35 = _________  for IEEE members
Quantity 2005:____ x $50 = _________ for non-IEEE members
Quantity 2006:____ x $35 = _________  for IEEE members
Quantity 2006:____ x $50 = _________ for non-IEEE members
Quantity 2007:____ x $35 = _________  for IEEE members
Quantity 2007:____ x $50 = _________ for non-IEEE members

S&H: QTY_____ x  $5 = _________

Total = _________
Send payment to:

IEEE Product Safety Engineering Society
c/o Richard Georgerian, PSES Board of Directors
7103 Sioux Court
Longmont, CO 80504
U.S.A.

Depending on stock availability allow 2 to 3 weeks for delivery.
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Sinusoidal waveforms

The IEC 60990 circuits meeting the frequency factor curves just described are shown in Fig-
ure 11. In each circuit the basic body model has a high frequency filter attached to meet the
appropriate requirements.

The performance of each circuit is shown in Figure 12 for the specific case chosen. For this
discussion, the case of 3.5 mA touch current has been selected. This case pushes the startle-
reaction situation beyond the 0.5 mA expected, but has been commonly used in IEC stan-
dards such as IEC 60950 and IEC 61010.

The TC comparison is shown in Figure 10 for the same input conditions.
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Note that the touch current curve (the V(output)/500ohm, blue curve) is falling. The circuit has
been designed to be the inverse of the frequency factor curve so that the same value can be
read from the meter and compared to the limit irrespective of the frequency of the TC signal.

In this case we expect the rms TC to be 3.5 mA and the peak value to be square root of 2 * rms
= 5 mA. The peak/rms ratio should them be the square root of 2 as shown in Table 5.
The s-r curve should be used for cases where the TC limit is 2 mA or less and the l-g circuit
above that. This will ensure that children will be able to let go of the circuit when touched.

In all of the cases examined here, there will be an emphasis on peak measurement, as the
body responds to peak values of current for electric shock, not rms values.

In each case shown in Figure 13 we see the 50 Hz fundamental and no harmonics.

Figure 14 looks at a 100 kHz sine wave input to each circuit. (The input voltage clearly defines
the generating waveform being considered for each case.) Comparing the peak and rms
values of each waveform for each circuit as before.

The frequency factor filter circuit (see IEC 60990 which developed these circuits) reduces the
TC value, as discussed earlier, at this frequency as shown in Table 6.

Figure 12. IEC 60990 measurement response:
startle-reaction circuit, upper; let-go circuit, lower.

(Ed note: the vertical axis also should note tc = V(output)/500ohm also in A)

Continued on Page 30
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Figure 13. 50 Hz sine wave FFT:
startle-reaction circuit, upper; let-go circuit, lower.

Figure 14. 100 kHz sine wave response:
startle-reaction circuit, upper; let-go circuit, lower.

Note that the input current curve (IRb) and the TC current curve (V(output)/500ohm) are laid upon one another and appear to be a

single curve.
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Each circuit treats the TC value in a different way—the TC is higher for the let-go measure-
ment. The increased current starting with the middle frequencies increases the total current.
The peak/rms ratio is still square root of 2. Again, only the fundamental frequency appears in
the FFT as shown in Figure 15.

Triangular waveforms

The triangular waveform might be considered a “stretched out” sine wave, as indicated by the
values shown in Table 7.

Triangular waveforms are found in some equipment drawing substantial regulated power for
heaters or similar loads. For this case the rms TC is lower than the 3.5mA that would be
allowed while the peak value is higher—about 5mA, one value below and one above as
shown in Figure 16. The peak/rms ratio is no longer square root of 2.

Somewhat to our surprise, Figure 17 shows that there are considerable harmonics associated
with the triangular waveform. The filter circuit component of the TC circuits properly acts on
these high frequency components of each waveform.

Square waves

The response to a line frequency square wave is shown in Figure 18. (Technically any fre-
quency in the range from 20–30 Hz to 80–100 Hz is dealt with about the same way; I usually

Table 7. 100 kHz sine wave TC 
Current Peak rms Peak/rms 

ratio 
s-r circuit TC = IV( output)/500 Ω  4.98 mA 2.868 mA 1.736 
l-g circuit TC = IV(output)/500  Ω 5.05 mA 2.869 mA 1.760 

 

Figure 15. 100 kHz sine wave FFT:
startle-reaction circuit, upper; let-go circuit, lower.

Continued on Page 33
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New PSES Members from 30 June 2008 Through 30
September 2008

Our new members are located in the follow-
ing countries: Australia, Canada, Czech
Republic, Saudi Arabia, Taiwan, United
Kingdom, USA

Alexandr Knapek
Bimal S. Patel

Bunh T Ma
Christopher Nathan Arldt

Fahad Abdullah Al-Mogairen
Flore Chiang

George Edward Page
Gerardo G Vuolo

Joseph T Samosky
Ken Budoff

Matthew Olson
Normand Juneau
Patricia Knudsen

Paul A Corbet
Rick Cooper

Robert J Nelson
Sanne Cubberley

Son Bang La
Tac Van Pham

Warren Richard Gartman

Figure 18. 20 ms (50 Hz) square wave response: startle-reaction circuit, upper; let-go circuit, lower.
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use 50 Hz for my analysis just because the period is 20ms, but it doesn’t matter in this discus-
sion.) The differences in the TC response (blue curve) between these s-r and l-g circuit re-
sponse is easily distinguishable here. This square wave has a one percent rise time—a very
short portion of the pulse.

There are enough high frequency components here that these circuits treat the applied volt-
ages differently from each other. Although the rms values are about the same, the peak val-
ues are quite different. Because of these differences the peak/rms ratios are quite different.
The peak values are the important measurement here because of our understanding that the
body responds to peak currents, not RMS currents and the Peak, rms, and Peak/rms values
are given in Table 8. The rms values are basically the same, but the peak values are quite
different (> 37% higher).

Figure 16. Triangular wave TC: startle-reaction circuit, upper; let-go circuit, lower.

Somewhat to our surprise, Figure 17 shows that there are considerable harmonics associated with
the triangular waveform. The filter circuit component of the TC circuits properly acts on these
high frequency components of each waveform.

Figure 17. Triangular wave FFT: startle-reaction circuit, upper; let-go circuit, lower.

Continued on Page 34
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Some high frequency differences can be seen in comparing two FFTs of the circuit response
to the square wave as shown in Figure 19.

Rectified sine wave

Figure 20 begins the discussion of rectification of line voltage which is an essential part of
utilization of electric energy in equipment today.

Table 9 shows what we might begin to suspect, that the rms values are lower than our sinusoi-
dal base case but the peak values are proportionally higher. The peak/rms ratio is greater
than 2. The high frequency differences appear above 25 kHz as shown in Figure 21.

Table 8. 20 ms (50 Hz) square wave TC 
Current Peak rms Peak/rms 

ratio 
s-r circuit TC = IV( output)/500 Ω  6.39 mA 4.991 mA 1.280 
l-g circuit TC = IV(output)/500 Ω 8.758 mA 5.054 mA 1.733 

 

Figure 19. 20 ms (50 Hz) square wave FFT:
startle-reaction circuit, upper; let-go circuit, lower.

Table 9. Half-wave rectified line-frequency (60 Hz) sine wave TC 
Current Peak rms Peak/rms 

ratio 
s-r circuit TC = IV( outpu t)/500 Ω  4.61 mA 2.264 mA 2.036 
l-g circuit TC = IV(output)/500 Ω 4.62 mA 2.265 mA 2.036 
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Figure 20. Half-wave rectified line-frequency (60 Hz) sine wave response:
startle-reaction circuit, upper; let-go circuit, lower.

Table 10. 1 ms rise time pulse TC 
Current Peak rms Peak/rms 

ratio 
s-r circuit TC = IV( outpu t)/500 Ω  8.319 mA 4.761 mA 1.747 
l-g circuit TC = IV(output)/500 Ω 8.917 mA 4.762 mA 1.873 

 

Figure 21. Half-wave rectified line-frequency (60 Hz) sine wave FFT:
startle-reaction circuit, upper; let-go circuit, lower.

Continued on Page 36



IEEE PSES Product Safety Engineering Newsletter Vol.  4  No. 3  Page 36

1 ms square wave
Figure 22 shows calculated by this method of responses for 100 ms pulses having a 1 sec rep
rate (within the heart cycle) and 1ms (1 percent) rise time.

This calculation was performed to look for a TC below 14 mA peak, to prevent VF for the
particulars of this case. With this rise time there is only a slight difference in the circuit re-
sponses between circuits, as shown in Table. The peak/rms ratio is not the square root of 2,
however.

The higher frequency components show as slight differences here as seen in Figure 23.

As can be seen from Figure 24, at slow rise times the TC is about 7.5 mA in each case. At fast
rise times, the TC is almost 10 mA for the s-r case and almost 14 mA for the l-g case. The
control of rise time is the key to using impulse circuits in applications where TC approaches
the limit.

Although the FFT waveforms seem to each other in Figure 25, the TC magnitude differs as we
saw in Figure 24. Both the magnitude and the peak/rms ratio are different for a fast rise time
when filtered by each TC circuit as shown in Table 11.

Limited current circuit analysis
Limited Current Circuit (LCC) evaluation portrayed in Figure 26 replicates a real world case.
IEC 60950 allows access to circuits which will not be an electrical shock hazard. This specific
waveform was submitted as a test case for analysis because of its characteristics.

Figure 22. 1 ms rise time pulse response:
startle-reaction circuit, upper; let-go circuit, lower.
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Examination of the LCC waveform from the s-r circuit shows the peculiar characteristic of
being less than 3.5 mA rms but more than 5 mA peak (IEC 60950 limits); see Table 12. Again,
reviewing this LCC waveform using the l-g circuit, the values are substantially larger and the
peak/rms ratio is also larger.

Compare the FFT’s with each other (which appear quite similar and contain harmonics start-
ing about 40kHz). This complex waveform cannot be evaluated by simply consulting the fre-
quency factor curves. The use of peak measurement is the only way to evaluate this complex
waveform.

Conclusions
This article compares the performance of the IEC 60990 eBurn, startle-reaction and let-go
circuits against basic waveforms. This leads to a better understanding as to the action of TC
waveforms and encourages the proper evaluation of TC waveforms in equipment1.

Figure 23. 1 ms rise time pulse FFT:
startle-reaction circuit, upper; let-go circuit, lower.

Figure 24. Impulse rise time comparison:
startle-reaction circuit and let-go circuit.

Continued on Page 38
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The simple waveforms shown here are not yet representative of the TC waveforms for mod-
ern equipment using mains voltage switching techniques. Switching electronics are used in
switch mode power supplies (SMPS) and variable speed drives. This technology is spreading
to many other types of equipment—commercial, industrial and household.

The principal conclusions are:
Both the s-r and the l-g circuits serve in a similar way for evaluation of LF waveforms, they

also properly accounting HF components.
Use of the let-go circuit for values approaching the l-g limit curve requires a more conser-

vative design to meet the limits.
The most important conclusion is that peak measurements are needed for the s-r and l-g

cases. These are specified in many standards but not uniformly applied today.

Touch Currents have become the low frequency counterpart to EMC currents—a residual of
the design process and not clearly controlled.

Table 11. 0.01 ms rise time pulse TC 
Current Peak rms Peak/rms 

ratio 
s-r circuit TC = IV( output)/500 Ω  9.732 mA 4.746 mA 2.051 
l-g circuit TC = IV(output)/500 Ω 13.687 mA 4.749 mA 2.882 

 

Figure 25. 0.01 ms rise time pulse FFT:
startle-reaction circuit, upper; let-go circuit, lower.
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Exploring further
How did we get to where we are today and what can we say about SMPS? Power supply
manufacturers tout the performance of their modules in meeting the needed performance
criteria for the applications they support.

Note from the Figure 28 example, however, that the input current is never a fixed value, it
oscillates over a small range (on the order of 1 A or so in this case) to maintain the output
regulation needed.

This current oscillation is capacitively coupled to earth and contributes to the TC for the prod-
uct. Many products use multiple dc-dc converters for the distribution of power in the product,
and each of these contributes to the TC for the product in their own way. The measured TC
will, of course, be composed of the sum of these sources. Note that both the output and the
input show a continuous harmonic spectrum for this power supply as shown in Figure 29.

The measured TC for a pfcSMPS (pfc = power factor corrected, a major effort on the part of
power supply manufacturers over the last 10 or more years to meet conducted emissions
requirements) in a product is shown in Figure 30 (top waveform) along with the pfc input
current waveform (bottom waveform).

Figure 26. Limited current circuit:
startle-reaction circuit, upper; let-go circuit, lower.

Table 12. LCC TC comparison:  
startle-reaction circuit and let-go circuit. 

Current Peak rms Peak/rms 
ratio 

s-r circuit TC = IV( ou tpu t)/500 Ω  5.070 mA 3.090 mA 1.641 
l-g circuit TC = IV(output)/500 Ω 1.536 mA 5.645 mA 2.044 

 

Continued on Page 40
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Figure 27. LLC circuit FFT:
startle-reaction circuit, upper; let-go circuit, lower.

Figure 28. Prototype dc-dc power supply I/O currents.

Figure 29. Prototype dc-dc converter I/O FFTs.
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The measured harmonics for the pfcSMPS TC waveform shown in Figure 30 are presented in
Figure 31. This oscilloscope analysis shows lots of harmonics near the fundamental as we’ve
seen in many of the non-sinusoidal examples (triangular, square wave, rectified sine wave,
and pulse). The oscilloscope analysis is limited to the first 50 harmonics (2.5–3 kHz); the SPICE

analysis used in this paper includes these first 50 harmonics and then goes to higher frequen-
cies.

Figure 30. pfcSMPS TC waveform, upper; input current, lower.

Figure 31. Measured frequency spectrum for pfcSMPS TC.

Continued on Page 42
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“Perkins.”

The Product Safety Engineering Newsletter is published quarterly during the last
month of each calendar quarter. The following deadlines are necessary in order
to meet that schedule.

Closing dates for submitted articles:

1Q issue: February 1
2Q issue: May 1
3Q issue: August 1
4Q issue: November 1

Closing dates for news items:

1Q issue: February 15
2Q issue: May 15
3Q issue: August 15
4Q issue: November 15

Closing dates for advertising:

1Q issue: February 15
2Q issue: May 15
3Q issue: August 15
4Q issue: November 15



Vol.  4  No. 3  Page 43  IEEE PSES Product Safety Engineering Newsletter

Institutional Listings
We invite applications for Institutional Listings from firms interested in the product safety field.
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